Maximum Power Output of Quantum Heat Engine with Energy Bath
نویسندگان
چکیده
Abstract: The difference between quantum isoenergetic process and quantum isothermal process comes from the violation of the law of equipartition of energy in the quantum regime. To reveal an important physical meaning of this fact, here we study a special type of quantum heat engine consisting of three processes: isoenergetic, isothermal and adiabatic processes. Therefore, this engine works between the energy and heat baths. Combining two engines of this kind, it is possible to realize the quantum Carnot engine. Furthermore, considering finite velocity of change of the potential shape, here an infinite square well with moving walls, the power output of the engine is discussed. It is found that the efficiency and power output are both closely dependent on the initial and final states of the quantum isothermal process. The performance of the engine cycle is shown to be optimized by control of the occupation probability of the ground state, which is determined by the temperature and the potential width. The relation between the efficiency and power output is also discussed.
منابع مشابه
A Parametric Study on Exergy and Exergoeconomic Analysis of a Diesel Engine based Combined Heat and Power System
This paper presents exergy and exergoeconomic analysis and parametric study of a Diesel engine based Combined Heat and Power (CHP) system that produces 277 kW of electricity and 282 kW of heat. For this purpose, the CHP system is first thermodynamically analyzed through energy and exergy. Then cost balances and auxiliary equations are applied to subsystems. The exergoeconomic analysis is based ...
متن کاملIncreasing waste heat recovery from an internal combustion engine by a dual-loop non-organic Rankine Cycle
This research proposes the combination of a dual-loop non-organic Rankine cycle (DNORC) with an internal combustion engine to increase the output power of the recovery system by focusing on the increase in the energy input and system efficiency. In doing so, it investigates the strategy of increasing the mean effective temperature of heat addition in the high-temperature Rankine cycle (HTRC) (t...
متن کاملبررسی اتلاف در مدار کوانتومی LC
In this article we consider the resistance of a quantum LC circuit as a heat bath. The heat bath can be modeled by a collection of quantum harmonic oscillators with a continuum of frequencies. By using the minimal coupling method between the circuit and the field describing the environment, the process of energy dissipation and probability transitions between the energy levels of the quantum c...
متن کاملar X iv : q ua nt - p h / 01 01 01 5 v 2 2 1 A pr 2 00 5 Entropy and Temperature of a Quantum Carnot Engine
t is possible to extract work from a quantum-mechanical system whose dynamics is governed by a time-dependent cyclic Hamiltonian. An energy bath is required to operate such a quantum engine in place of the heat bath used to run a conventional classical thermodynamic heat engine. The effect of the energy bath is to maintain the expectation value of the system Hamiltonian during an isoenergetic p...
متن کاملDerivation of Specific Heat Rejection Correlation in an SI Engine; Experimental and Numerical Study
The thermal balance analysis is a useful method to determine energy distribution and efficiency of internal combustion (IC) engines. In engines cooling concepts, estimation of heat transfer to brake power ratio, as one of the most significant performance characteristics, is highly demanded. In this paper, investigation of energy balance and derivation of specific heat rejection is carried out e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 18 شماره
صفحات -
تاریخ انتشار 2016